GAS RATING - NATURAL GAS

AFUNDAMENTAL TEST TO confirm the quantity of gas burned by an appliance over a specific time frame, typically one hour (3600 seconds).
For practicality the test is conducted over a shorter time frame - either one complete revolution of the test dial (ft 3) or 2 minutes plus number of seconds until the next whole number on test drum $\left(\mathrm{m}^{3}\right)$. Once the quantity of gas used is established, the appliance heat input can be determined using a simple calculation to factor in the fuels Calorific Value (CV).

Gas rating - imperial ($\mathrm{ft} 3 / \mathrm{hr}$)

An imperial gas meter utilises a test dial with one complete revolution indicating the amount of gas used in $\mathrm{ft} 3 / \mathrm{hr}$. The test dial may be $1,2,5$ or $10 \mathrm{ft}^{3}$, depending on meter size.

The following formula is used to determine the amount of gas used:

Gas rate $(\mathrm{ft} 3 / \mathrm{hr})=\frac{3600 \times \text { Number of } \mathrm{ft}^{3} \text { per revolution of test dial }}{\text { Time taken for one complete revolution (sec) }}$

Gas rating - metric ($\mathrm{m}^{3} / \mathrm{hr}$)

A modern metric gas meter utilises a test drum which is split into the first 5 digits representing m^{3} and a further 3 digits (within the red surround) in dm^{3} (one tenth of a m^{3}).

Whilst every effort has been made, Certsure LLP cannot be held responsible for the accuracy of the information contained within this pocket guide, or for its subsequent use.

PGG 3

To gas rate a metric meter, note the first reading and run the appliance for 2 minutes (see Note) the end of which you take the second reading. Subtract the first reading from the second to establish the amount of gas used.

Note: Additional seconds may be needed after the 2 minute period until the next whole digit appears. Include these additional seconds within the formula.

The following formula is used to determine the amount of gas used:
Gas rate $\left(\mathrm{m}^{3} / \mathrm{hr}\right)=\frac{3600 \times \mathrm{m}^{3}}{120+\text { any additional seconds }}$

Heat input

With a known quantity of gas used in either $\mathrm{ft}^{3} / \mathrm{hr}$ or $\mathrm{m}^{3} / \mathrm{hr}$ the heat input for the appliance (the energy produced from that quantity of fuel burned) can be calculated in either:

* btu/hr (imperial)
* kW (metric)

For Natural Gas an average* CV is used:
*. $\mathrm{ft}^{3} / \mathrm{hr} \times 1040=\mathrm{btu} / \mathrm{ft}^{3}$

* $\mathrm{m}^{3} / \mathrm{hr} \times 38.76=\mathrm{MJ} / \mathrm{m}^{3}$
*A more accurate result will be obtained by using the CV as stated on the customers' gas bill.

Imperial (ft^{3})

Use the following formula to establish the heat input in btu:
Heat input (btu/hr) $=\mathrm{ft} 3 / \mathrm{hr} \times 1040\left(\mathrm{btu} / \mathrm{ft}^{3}\right)$
To convert btu/hr to kW, divide by 3412

Metric (m ${ }^{3}$)

Use the following formula to establish the heat input in kW
Heat input $(\mathrm{kW})=\frac{\mathrm{m}^{3} / \mathrm{hr} \times 38.76\left(\mathrm{MJ} / \mathrm{m}^{3}\right)}{3.6}$
The reading obtained from either of the above calculations will be a gross figure and so, where the appliance manufacturer quotes a net heat input this will require to be converted - dividing the final figure by 1.1 (a conversion factor for Natural gas) will provide a net value.

